

Commercia & Industria LED Lighting Solutions

Verbatim.

 \square

www.verbatimlighting.com.au sales@verbatimlighting.com.au

CLEANROOM IP65

- 1 23W, 30W or 40W options
- 1200x300 or 600x600
- ▲ L80B10 >100,000hrs
- HIColour CRI90
- Cyanosis compliant
- MacAdam 3 SDCM
- 1 5 year warranty
- In the second se

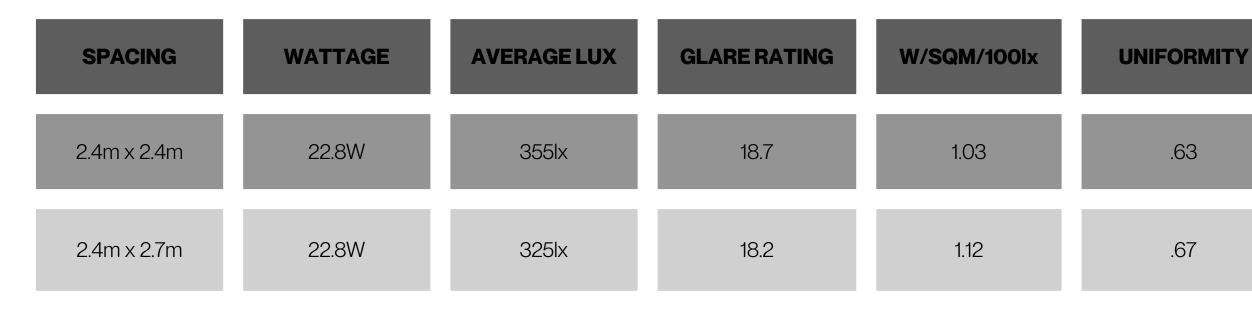
- Full gasketing between ceiling and frame ensure a secure fit.
- Firm out-reach installation mounts on the main body
- 295mm W x 1195mm L x
 90mm D

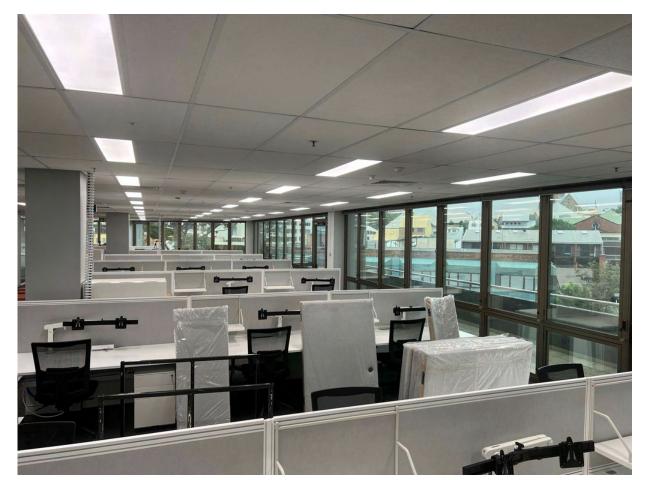
APPLICATIONS

Laboratories Clean Areas

NOVABLADE G3

- 1 23W, 30W or 40W options
- 1200x300, 600x600, 600x300
- 1-10v, DALI, or Casambi control
- L80B10 >75,000hrs
- Ill-Colour CRI90
- Cyanosis compliant
- MacAdam 3 SDCM
- 1 year warranty
- Micro-prismatic diffuser
- Interstation Inter





APPLICATIONS Offices

Based on a 400sqm typical office space

NOVABLADE G3 Specification

NOVALED MAXI M6

M8 240mm | 12W or 22W

- 12W or 22W
- IP44 with low-glare satin diffuser
- \mathbf{M} 90 CRI and COI compliant as standard (4K)
- LM80 >100,000hrs
- 7 year Warranty (see terms)
- 1-10V or Dali available from stock Casambi on request.
- In Flicker Free
- 165mm or 240mm diameter trim
- A5W optional in M8

L. M6 165mm | 12W or 22W

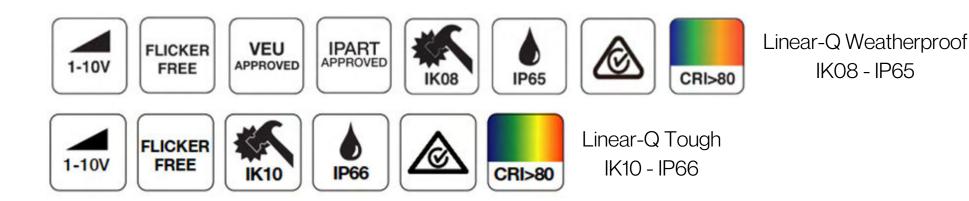
3

APPLICATIONS

Corridors, Offices, Bathrooms, Kitchens, Reception areas

NOVALED DECOR PLUS

- 12W or 12W
- Low-glare housing
- 1 90 CRI
- IM80 >100,000hrs
- 7 year Warranty (see terms)
- IP40 with IP44 trim available
- Phase-dim or Dali available from stock Casambi on
- 🚹 request.
- Flicker Free
- a ~90mm cutout



APPLICATIONS

Corridors, Offices, Bathrooms, Kitchens, Reception areas

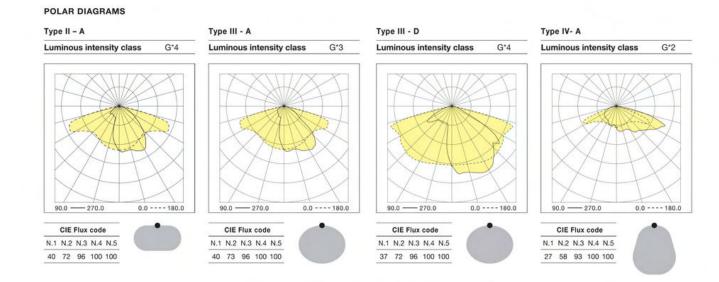
LINEAR-Q RANGE

- \blacksquare Selectable wattage ~15W or 30W
- ▲ Selectable CCT 4000k, 5000k, or 6000k
- Emergency option available
- Sensor option available
- 🚹 7 year warranty
- L-Q Weather-proof option is certified HACCP
- L-Q Tough supplied with anti-tamper screws including for the mounting clips

Linear-Q Weatherproof IK08 - IP65

Linear-Q Tough IK10 - IP66

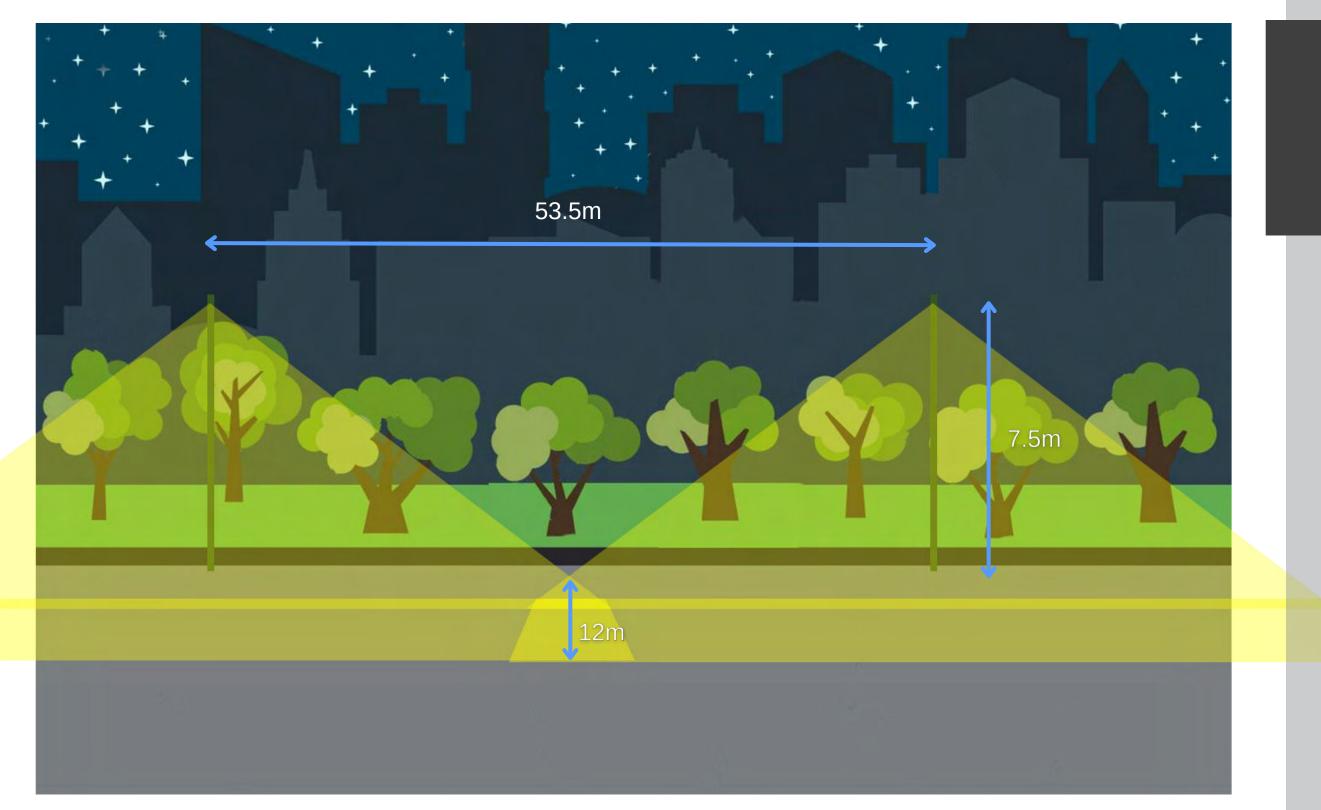
APPLICATIONS Back of house Carparks, Awnings


ANTARES

- 12,500lm up to 18,00lm
- A Standard CCT options of 3000k or 4000k, 2200k or 2700k available
- In the second se
- ▲ 120,000h L90B10 (Tq = 25°C)
- \blacksquare Maximum luminous intensity class $y ≥ 90^\circ$: < 0.49 cd/klm
- \mathbf{I} Tool-less entry and maintenance
- 🏦 IK08 IP66

NERI

APPLICATIONS Entrances Carparks


PCD Parking

Specialist optics to suit forward throw or side emmision

	_		_		_																																			
	10.00	ta t	17	2/	3	n 12	a ta	7	$\overline{\mathcal{A}}$	2	1.0	10	-	140	10.00	20	20	30	210	2.04		14	10.04	14	10	1.	1,1	1.2	101	14	100	12.00	10.04	10	$\langle q \rangle$	Zľ	500 °	ar '	200	14.16
AL IN RAC	State of the second	5.0 5	1	X	2 2	a 5	n 11	1/		2	10.52	10.71		4.0	5.0		-		2	20		2017	1	10	2.18	1	1.0	2.0	1.	10	10	10.00	b 4	14	HANN	2	3			200
1	A	CC.	K	N	21:	ACO	5. *=	1	jeh)	2									P I]§{	W/LE	2	21			
1.00 11.29	1616 51	ACL AR	1	1//	21.	a à	a h	D	1/	2	10.77	10.94	2			28.65		20.63				18.90	34.01	1.75	7.95	1.2		112					19.21	K	3//		304	26.97	25.4	
1.50 11.20	110	Ġ.,	1	1//	ð.	. Č	2 1	1	1/	\mathcal{I}	11.11			11.24	16.56	29.32	21.39	240	3.11	24.58	1	17.66	10.00	\$15	1.0		13		3.09	725			2.0	V	x R K H	夠	34.77	5141	'ne '	16.33
- ^{he} •=	15.00]		Y.	21	22			Ø	2/2	9.	2.	11.55	1000	, %	17.88	8	2107	20.80	7 ³⁰⁷⁷	20.25	18	11.12	10:00	9-	7.48	1-	d"	1.71	11	20	1.11	12	15.01	12	1/2	9.	ř3	20.12	**1/	4
	16.27 16.2	2.2	2.4	2.9	2.0	2.54	19.20	C.88	1.01	14.29	10.10	10.00	12.80	1042	14.89	16.02	Ъщ.	122	17.50	16.74	11.0	12.78	1:30	1.15	14	7.28	14	1.0	7.26	1.0	10.38	12.34	144	16.04	1:20	17.27	04	ны 1	15.28	10.70
_	18.15 25.0	22	30	24	2120	8.87	18.61	774	142	12.09	12.50	10.00	12.60	12.05	12.79	12.07	10.78	\$4.08	14.56	10.85	10.10	12.86	91.25	10.33	13	14	10	7.80	1.2	1.0	10.65	11.84	'u #	12.66	14.02	ka l	N30	10.12	12.85	12.54
- P	21.85	: ' 807	31.51	3.0	2.6	ha 1	9.00	aso 1	7.06	haar .	1.00	Sam	See.	Seat	1	1.0	5.0	A. at	1 2.00	1	See	See	1.4	10.14	10.29	3.0	3.0	1.01	134	10.05	10.71	1:38	11.95	1 0.0	12.45	12.00	0.0	1.30	11.45	11.12
4	200 200	12.00	hes	200	2.0		tan 1		1.50	14.79		\cap	nti	n or	\sim	sific) J	ر fر	ror	000		alk	0		10.00	11.10					31	SP/	ACI	EŞ.,	1.2	Inu	1.0	hai	11.00	1.14
	10m 100	42	300	20.		h 40 - 1				in se				-			-								10.34	1411	100	INC	CL.	2 A	CC.)	100	10.38	See. 9	tos:	1140	1.44	1.29	10.00
	40 31	1	9 % :	a 37.0	1 348	3.0	30	20	1000			ťO	r ad	CCU	rat	ea	Ind	eve	en i	llun	าเทล	anc	е												1. m. 1					
-			E 14	1 140	1.34) ¥ŧ	3*	34										14					_			10.4	the		14.54	14.00	1.4			141			nav.	12.04	10.49	14.14
*	239	DĽ	•	10.00	'an/	her.	10.0	34.0	16		12.64	12	10.29	J ³	7	7.85	18	3	10.38	19	10.75	2	0	19.18	21	19.23	1 2	2	15.60	23	11,08	112	24	25	1.30	6.73	0.00	26		10.25
32.03 20	4.0 5	121 1010	10000	% 12	10.00	56.75	20.54	34.05			tate.	11,10	1948	3.4	14	8.33	140	1.16	10.20	12.0	1478	16.31	1.40	210	20.31	23.00	27	200	0.74	11.52	10.78	1a	7.21	743	1.10	0.48	94	tt ps	19.65	21.12
32.00 30	- Res - 1		Map P	10.28	38.90	31.42	3n	34.16			14.05	12.28	HP	10.28	10	1.21	1.0	1.06	11.22	19.23	14.8	2.9	3.0	27.95	3.2	20.00	210	248	20.02	4.87	11.02	1.0	7.96	7.82	140	0.91	1.00	20.00	20.92	20
= 500 50	1 3m 3	a 1 00	an.58	20	10.05	31.65	3.0	2.17			16.51	10.21	10.31	'n л	t		STA	ha KE	1:10	1472	11.3	11.65	11,00	11.11	2.57	32.00	30.73	20	2194	1 4.05	1.4	11	7.54	732	hs -	1.0	11.17	21.98	24.40	30
540 34	22 3		37.25	200	34	38.40	2000	22.58			16.02	14.00	\$4.25	100 5	THE	FP/	ARKI	NO	140	14.0	18.0	ne	1.00	he	21.11	6. 	210	-	2.2	% .2	11.58	1.00	7.8	240	10	1.54	Nat 1	5.20	24.85	22
200 20	2 240 2		No. 10	26.06	-			-			N-10	less.	10.28	12.38	1-23	16.00	144	14.01	16.94	14.50	18.80	2.00	1.0	3.0	2	20.04	3.8	-	* 8.18	14.30	10.00	1 .0	1.0	1.01	10	0.55	MP 1	9411 - P	2.00	3.2
				210	=								201	242	2	2.72	.30		14.00	31					_															
=		1 fr			2													21.65																						
27.63	200 7		24.14	16.50	MH Q2	14.50	14.00	10.68							Ţ	10.00																								
200 20			23.60	17.50	15.05	M.C.	10.04	12.50																																
25.08 20.	8		22.42	16.29	10.00	12.10	1:10	11.20				- 11		3031	1			34.96																						
- 343 3x	PA E		19.85	1418	hur.	11.24	10.40	hr.					23.54	2125	F	33	28	22.58	16.43	10.00																				
<u> </u>		-			Sec.	1.er	1 11	1.00	l			-																												-
Solutio	ns fo	r ra	mp	DS (& r	bat	:hv	vay	ys																															

NERI ANTARES Carparks

Category: PR3 Avg illuminance >1.75lx Min Illuminance >0.3lx Illuminance Uniformity <8

NERI

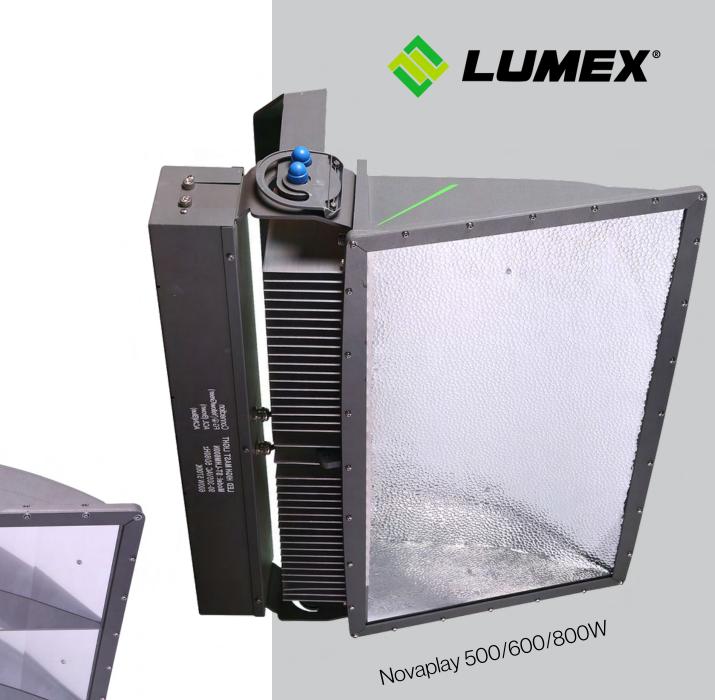
ANTARES

Type III-D Roadway Spacing

NOVALINE LINEAR TRUNKING

🆺 35W, 55W

- Low-cost, tool-less installation
- Integrated 3-phase circuits
- 녪 IP40
- Iter 1 DALI drivers- advanced dimming options
- Motion/daylight sensor accessory
- T & L standard module node connectors
- In Suspended or surface mount options
- In the second se
- 1 year warranty to 35,000hrs



Supermarkets, Retail Stores, Warehouses, Offices, Galleries & Halls

NOVAPLAY HIGH MAST LIGHTING

- 100W up to 800W (Novaplay Wide)
- 1500W Metal Halide replacement
- 100,000+ lumens
- Asymmetric full cutoff
- Up to 130 lumens per watt
- Integral 10KV surge protection
- Simple installation & aiming
- IP65
- Easy Maintenance
- 7 year warranty

Sporting facilities & stadium lighting, High mast roadway, Airport apron & security, Docks & ports, Industrial parking lots

SKYBAY GEN 4

Aluminum Reflector

- 180W up to 180W
- 🏦 175lm/W delivered
- In Possible to get to UGR24 with diffuser
- 녪 IP65, IK08
- In the second se
- Motion/daylight sensor accessory
- \mathbf{I} Bluetooth mesh option available.
- In Full thermal control
- \blacksquare 7 year warranty to 35,000hrs

Low-glare diffuser

Surface mount bracket accessory

Standard Skybay G4

APPLICATIONS

Ambulance Bays Carpark Entrance, Warehouses, etc

HALO BOLLARD

🆺 14W, 25W

- \square Available in 2 sizes: halo 5 (475mm) & halo 10 (975mm)
- In Delivers 360 degrees of low glare illumination
- Type 5 optics
- 🏦 IP66, IK10
- In DALI options available
- Inner lens & clear outer lens
- In Supplied with integral or remote driver
- \mathbf{I} Complete with ragbolt kit for secure installation
- farchinesity for a 46,000 hrs (L90)

APPLICATIONS Public Spaces Residential Walkways


MIGHTY BOLLARD

- 🆺 14W, 24W
- \mathbf{m} Available in 2 sizes: mighty 500 (500mm) & might 900 (900mm)
- Low glare illumination
- Type 4 or Type 5 optics
- 🏦 IP66, IK10
- In DALI options available
- Multi-optic PC lens
- In Concealed fixing plate & ragbolt kit for secure installation
- 1 5 year warranty to 50,000hrs
- In Visor accessory option

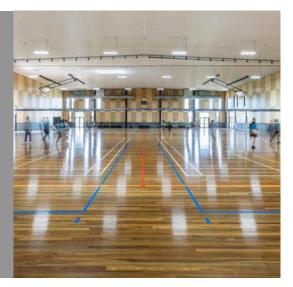
APPLICATIONS Public Spaces Residential Walkways

Lighting Solutions for Any Space

Industry & Infrastructure

Offices

Streets & Infrastructure



Hotels & Residential

Verbatim.

Education & Sports

V Verbatim

Commercial & Industrial

LED Lighting Solutions

www.verbatimlighting.com.au sales@verbatimlighting.com.au

